

SOFTWARE TESTING COMPENDIUM
V2021.01

ÖMER KARACAN
SW-T-(IT 538)

Sabanci University

FEBRUARY 8, 2021

SOFTWARE TESTING COMPENDIUM February 8, 2021

1

SOFTWARE TESTING COMPENDIUM

Table of Contents
1 Introduction .. 4

1.1 Objectives of Testing .. 5

1.2 Testing’s Contributions to Success ... 5

1.3 Errors, Defects, Failures, Root Causes and Effects ... 5

1.4 Seven Testing Principles ... 6

1.5 Supplementary Material ... 6

1.6 Exercises ... 6

2 Software Development and Testing ... 8

2.1 Software Development Lifecycle Models ... 8

2.2 General V-Model .. 8

2.2.1 Basic Characteristic ... 9

2.2.2 Supplementary material ... 10

2.3 Agile Method .. 10

2.4 General V-Model Documentation View ... 11

2.5 Supplementary Material ... 12

2.6 Exercises ... 13

3 Concepts and Definitions .. 14

3.1 Fundamental Test Process .. 14

3.2 Test Work Products .. 16

3.3 Traceability ... 17

3.4 Test Levels .. 17

3.5 Test Types ... 22

3.6 Supplementary Material ... 24

3.7 Exercises ... 25

4 Static Testing... 27

4.1 Characteristics .. 27

4.2 Supplementary Material ... 28

4.3 Exercises ... 28

5 Test Techniques .. 29

5.1 Black-box Test Techniques ... 29

5.1.1 Equivalence Partitioning ... 30

5.1.2 Boundary Value Analysis .. 31

SOFTWARE TESTING COMPENDIUM February 8, 2021

2

5.1.3 State Transition Testing .. 32

5.1.4 Use Case Testing ... 34

5.2 White-box Test Techniques .. 36

5.3 Supplementary Material ... 38

5.4 Exercises ... 39

6 Test Tools .. 40

6.1 Test Tools Basics ... 40

6.2 Supplementary Material ... 41

6.3 Exercises ... 41

7 Risks and Testing... 42

7.1 Risk Definition ... 42

7.2 Product Risks .. 42

7.3 Project Risks .. 42

7.4 Risk-based Testing and Product Quality ... 43

7.5 Risk Management procedure ... 44

8 References .. 46

9 ANNEX – TOPIC SECTION .. 47

9.1 Overview or 1st sub-topic if given .. 47

9.2 2nd sub-topic if given ... 47

9.3 Exercises ... 47

9.4 Supplementary Material ... 47

History of Change

26.05.2020 v2020.01 Initial creation
11.06.2020 v2020.02 Figure ISTQB FUNDAMENTAL TEST PROCESS replaced w/ a detailed one!

 1 line added: “Test implementation work products include …”
 1 line added: “Test execution work products …”
 2.5 Supplementary material revisited.
 Exercise 2.6 is extended.

21.06.2020 v2020.03 Supplementary Material is inserted into Ch.2-3 and 6
 Figure 7 updated
 COMPENDIUM file name convention is changed: usage of version number instead of date!
 Supplementary Material section updated!
 “Dynamic Test Process” is defined and Figure 4 updated
 Figure 5 inserted into 3.3

30.06.2020 V2020.04 Figures are provided for ch.5
08.02.2021 V2021.01 Precise referencing to the corresponding chapter in [ISTQB2018] to ease the creation of the presentation

slides per chapter.

SOFTWARE TESTING COMPENDIUM February 8, 2021

3

Important remark for readers: In this document, the quoted text is surrounded by quotation marks and in italics,
e.g., “quoted-text”. In-text citations are used directly after the quoted text, e.g., “quoted-text [SWT2012]”. If a
citation is missing than it is intentional and purposely, which means that the text is without exception identical to
the standard document “ISTQB Certified Tester Foundation Level Syllabus Version 2018 V3.1” or [ISTQB2018].

Important remark for students: Select a concrete system of your preference and use it as a context (reference)
for the exercises found at the end of selected chapters.

SOFTWARE TESTING COMPENDIUM February 8, 2021

4

1 Introduction
ISTQB 2018 Syllabus Ch. 1 Fundamentals of Testing

ISTQB 2018 Syllabus Ch. 1.1 What is Testing?

“Software systems are an integral part of life, from business applications (e.g., banking) to consumer products
(e.g., cars). Most people have had an experience with software that did not work as expected.

Software that does not work correctly can lead to many problems, including loss of money, time, or business
reputation, and even injury or death.

Software testing is a way to assess the quality of the software and to reduce the risk of software failure in
operation.”

FIGURE 1 SOFTWARE TESTING SCOPE

“Some testing does involve the execution of the component or system being tested;
such testing is called dynamic testing.”

Dynamic testing

“Other testing does not involve the execution of the component or system being
tested; such testing is called static testing. So, testing also includes reviewing work
products such as requirements, user stories, and source code.”

Static testing
Review

SOFTWARE TESTING COMPENDIUM February 8, 2021

5

Software testing focuses on ”verification of requirements, user stories, or other
specifications”, i.e. “whether the system meets specified requirements” and on
“validation, which is checking whether the system will meet user and other
stakeholder needs in its operational environment(s).”

Verification1 and
validation2 of
requirements

1.1 Objectives of Testing
ISTQB 2018 Syllabus Ch. 1.1.1 Typical Objectives of Testing

“For any given project, the objectives of testing may include:

 To prevent defects by evaluate work products such as requirements, user stories, design, and code,
 To verify whether all specified requirements have been fulfilled,
 To check whether the test object is complete and validate if it works as the users and other stakeholders

expect,
 To build confidence in the level of quality of the test object,
 To find defects and failures thus reduce the level of risk of inadequate software quality,
 To provide sufficient information to stakeholders to allow them to make informed decisions, especially

regarding the level of quality of the test object,
 To comply with contractual, legal, or regulatory requirements or standards, and/or to verify the test

object’s compliance with such requirements or standards.

1.2 Testing’s Contributions to Success
ISTQB 2018 Syllabus Ch. 1.2.1 Testing’s Contributions to Success

“Rigorous testing of components and systems, and their associated documentation, can help reduce the risk of
failures occurring during operation.” In this context, the testers review and analysis the test objects intensively in
all phases of development. For example:

“Having testers involved in requirements reviews or user story refinement could
detect defects in these work products.”

Requirements analysis

“Having testers work closely with system designers while the system is being
designed can increase each party’s understanding of the design and how to test it”
and thus “can reduce the risk of fundamental design defects.”

System software design

“Having testers work closely with developers while the code is under development
can increase each party’s understanding of the code and how to test it” and thus
“can reduce the risk of defects within the code and the tests.”

Software
implementation

“Having testers verify and validate the software prior to release can detect failures
that might otherwise have been missed and support the process of removing the
defects that caused the failures.”

Component testing
System testing

1.3 Errors, Defects, Failures, Root Causes and Effects
ISTQB 2018 Syllabus Ch. 1.2.3 Errors, Defects, and Failures

ISTQB 2018 Syllabus Ch. 1.2.4 Defects, Root Causes and Effects

1 Verification: “Confirmation by examination and through provision of objective evidence that specified
requirements have been fulfilled.” [ISTQBterm]
2 Validation: “Confirmation by examination and through provision of objective evidence that the requirements for a specific
intended use or application have been fulfilled.” [ISTQBterm]

SOFTWARE TESTING COMPENDIUM February 8, 2021

6

“A person can make an error (mistake), which can lead to the introduction of a defect (fault or bug) in the
software code or in some other related work product.

If a defect in the code is executed, this may cause a failure”. The failure is the perception of the defects outside of
the system. That is, an error injected by a programmer into the software is a defect. When a defect is executed, it
may cause the software malfunction. The customer’s perception is a failure of the system, and his/her complaint
is an effect.

“For example, suppose incorrect interest payments, due to a single line of incorrect
code, result in customer complaints.
The defective code was written for a user story which was ambiguous, due to the
product owner’s misunderstanding of how to calculate interest.
In this example, the customer complaints are effects. The incorrect interest payments
are failures. The improper calculation in the code is a defect, and it resulted from the
original defect, the ambiguity in the user story.
The root cause of the original defect was a lack of knowledge on the part of the
product owner, which resulted in the product owner making an error while writing
the user story.”

Example

Error, defect

Effect
Failure

Root cause

1.4 Seven Testing Principles
ISTQB 2018 Syllabus Ch. 1.3 Seven Testing Principles

There are unwritten principles of software testing, which may be valid for testing all kinds of testing, which are:

1. Testing shows the presence of defects, not their absence,
2. Exhaustive testing is impossible,
3. Early testing saves time and money,
4. Defects cluster together,
5. Beware of the pesticide paradox,
6. Testing is context dependent,
7. Absence-of-errors is a fallacy (i.e., a mistaken belief)

1.5 Supplementary Material
o Course Video Clip

 Name: “What is Software Testing & Why Testing is Important?”
 Location: https://youtu.be/TDynSmrzpXw

o Course Video Clip
 Name: “Errors Defects and Failures”
 Location: https://www.youtube.com/watch?v=CxBxQEGcYKk

o Course Video Clip
 Name: “Seven Testing Principles: Software Testing”
 Location: https://www.youtube.com/watch?v=rFaWOw8bIMM

1.6 Exercises

1. Distinguish between error, defect, and failure. Give two examples from your selected system.

2. Distinguish between the root cause of a defect and its effects. Give two examples from your selected
system.

SOFTWARE TESTING COMPENDIUM February 8, 2021

7

3. Explain two of your choice of the seven testing principles. Give an example from your selected system.

4. Explain the difference between ”Verification” and “Validation” of requirements.

SOFTWARE TESTING COMPENDIUM February 8, 2021

8

2 Software Development and Testing

2.1 Software Development Lifecycle Models
ISTQB 2018 Syllabus Ch. 2.1 Software Development Lifecycle Models

“A software development lifecycle model describes the types of activity performed at each stage in a software
development project, and how the activities relate to one another logically and chronologically.”

“In any software development lifecycle model, there are several characteristics of good testing:

 For every development activity, there is a corresponding test activity,
 Each test level has test objectives specific to that level,
 Test analysis and design for a given test level begin during the corresponding development activity,
 Testers participate in discussions to define and refine requirements and design, and are involved in

reviewing work products (e.g., requirements, design, user stories, etc.) as soon as drafts are available.

No matter which software development lifecycle model is chosen, test activities should start in the early stages of
the lifecycle.”

“Software development lifecycle models must be selected and adapted to the context of project and product
characteristics. An appropriate software development lifecycle model should be selected and adapted based on
the project goal, the type of product being developed, business priorities (e.g., time-to-market), and identified
product and project risks.”

Today, software development projects use mainly three types of lifecycle model as follows:

 Sequential development lifecycle model,
 Iterative and incremental development lifecycle model, and
 Hybrid models as a combination of both.

As a sequential model, the “V-model integrates the test process throughout the
development process, implementing the principle of early testing. Further, the V-model
includes test levels associated with each corresponding development phase, which
further supports early testing …. In this model, the execution of tests associated with
each test level proceeds sequentially, but in some cases overlapping occurs.”

V-model

As an Iterative and Incremental development model, the “Agile development involves
small iterations of software design, build, and test that happen on a continuous basis,
supported by on-going planning. So, test activities are also happening on an iterative,
continuous basis within this software development approach.”

Agile model

The hybrid models are usually company specific models that are designed to satisfy
product specific expectations. Usually, the agility is given on team level and above
teams the project structure and management are shaped by the company’s traditional
development methodology. The hybrid model will not be debated further in this
document.

Hybrid model

2.2 General V-Model
Text in italics: [STFebook]

SOFTWARE TESTING COMPENDIUM February 8, 2021

9

2.2.1 Basic Characteristics

“An enhancement of the waterfall model is the general V-model, where the constructive activities are decomposed
[(separated)] from the testing activities. The model has the form of a V. The constructive activities, from
requirements definition to implementation, are found on the downward branch of the V [left side]. The test
execution activities on the ascending branch are organized by test levels and matched to the appropriate
abstraction level on the opposite side’s constructive activity. “

The basic characteristic of the general V-model is the separation of development and testing tasks as
corresponding activities, that is, on each level, specification, planning and testing activities complete a level-
specific (horizontal) development life-cycle.

Testing is planned and executed at all levels i.e. input from requirements to the maintenance of the delivered
software. The two gradients of “V” illustrate this concept.

FIGURE 2 GENERAL V-MODEL – PROCESS VIEW

The left gradient represents the software construction, that is, development activities without validation and
verification, but “top-down and upstream tracing”3.

3 Top-down and upstream tracing of the requirements is a method of verification (based on expert review) whether the
requirements are considered completely at all levels down to the code, and vice versa.

SOFTWARE TESTING COMPENDIUM February 8, 2021

10

During development, the input requirements are analyzed, systems requirements are identified, functional
system specifications and software architecture are created, architecture components are designed and finally
coded.

The right gradient of the V-model defines corresponding test levels, that is, “for each specification and
construction level, the right branch of the V-model defines a corresponding test level:

 Component test verifies whether each software component correctly fulfills its specification.
 Integration test checks if groups of components interact in the way that is specified by the technical

system design.
 System test” validates “whether the system as a whole meets the specified requirements.
 Acceptance test checks if the system meets the customer requirements, as specified in the contract and/or

if the system meets user needs and expectations.”

2.2.2 Supplementary material
 Course Video Clip

o Name: “What Are the Steps of the Software Development Lifecycle?”
o Location: https://www.youtube.com/watch?v=gNmrGZSGK1k

 Course Video Clip
o Name: “SDLC Vs STLC”
o Location: https://youtu.be/An7HC1LolDM or

 embedded in https://www.guru99.com/v-model-software-testing.html

2.3 Agile Method
Text in italics: https://www.guru99.com/agile-scrum-extreme-testing.html

“Agile method proposes incremental and iterative approach to software design.”

Based on Extreme Programing, “Agile methodology is a practice that promotes continuous iteration of
development and testing throughout the software development lifecycle of the project. Both development and
testing activities are concurrent.”

Agile The characteristics of the Agile Method are:

 “Agile method proposes incremental and iterative approach to software design
 The agile process is broken into individual models that designers work on
 The customer has early and frequent opportunities to look at the product and make decision and

changes to the project
 Agile model is considered unstructured compared to the waterfall model
 Small projects can be implemented very quickly. For large projects, it is difficult to estimate the

development time.
 Error can be fixed in the middle of the project.
 Development process is iterative, and the project is executed in short (2-4) weeks iterations. Planning

is very less
 Documentation attends less priority than software development
 Every iteration has its own testing phase. It allows implementing regression testing every time new

functions or logic are released.
 In agile testing when an iteration end, shippable features of the product is delivered to the customer.

New features are usable right after shipment. It is useful when you have good contact with customers.
 Testers and developers work together
 At the end of every sprint, user acceptance is performed

SOFTWARE TESTING COMPENDIUM February 8, 2021

11

 It requires close communication with developers and together analyze requirements and planning.”

At the beginning of Agile hype, it was a guidance for development teams individually. As the agility becomes
popular a need is emerged for orchestration of large numbers of agile teams in an enterprise. The Scaled Agile
Framework (SAFe) defines a set of organizational and workflow patterns for enterprises to scale lean and agile
practices. The SAFe supports alignment, coordination, and budget-aware product release across large numbers of
agile teams.

2.4 General V-Model Documentation View
Depending on the project type, the document landscape changes, for example, safety critical projects are
document driven projects, because the software as a product underlies stringent international safety rules.
Contrarily, a documentation management cloud application like dropbox may need few documents to drive the
development.

FIGURE 3 GENERAL V-MODEL – DOCUMENTATION VIEW

The User Requirements Specification (CRS) describes end user expectations, is drafted from the client’s point of
view, and focuses on business aspects rather than the technological ones. It is more or less a wish list.

The System Requirements Specification (SRS-SYS) document describes all data, functional and non-functional
requirements of the system under development, which is written from the user’s perspective. This document has
a legal character of business agreement with the customer.

The System Design Specification (SDS) describes the complete design for the system under development, which is
written toward the architects and developers who will use it to create the necessary components and test use
cases.

SOFTWARE TESTING COMPENDIUM February 8, 2021

12

 Validation/Verification method is embedded in the System Test Specification, which describes the system
(level) test cases to be performed to validate that the system works according to SRS-SYS. System (level)
test cases describe what to test (functional and non-functional requirements, system interfaces and data
sets, and quality attributes) and how to test (test scenarios, input test data, and expected output data
(results)).

The Software Requirements Specification (SRS-SW) describes all data, functional and non-functional
requirements of the software under development, which is written from the user’s perspective. This document
has a legal character of business agreement with the customer.

 Validation/Verification method is embedded in the Software Test Specification, which describes the
software test cases to be performed to validate that the system works according to SRS-SW. Software test
cases describe what to test (functional and non-functional requirements, software interfaces and data
sets, and quality attributes) and how to test (test scenarios, input test data, and expected output data
(results)).

The Software Architecture Specification describes a component-oriented architecture of the software under
development by focusing on key quality attributes, like reliability, performance, robustness, etc.

 Validation/Verification method is embedded in the Integration Test Specification, which describes the
test cases to be performed to validate that the software architectural components interoperate with each
other successfully. Integration test cases describe how to test full stake or partial integration of the
software system. It describes also needed mocked, simulated and proxy components as replacements for
those which are not developed or not interoperable yet.

The Component/Unit Design Specification provides detailed design for each software component including their
interfaces.

 Validation/Verification method is embedded in Component/Unit Test Specification, which formally
describes how to test the individual components/unit of a software. The unit test specification is itself an
executable software module which relies on an automated unit testing framework, such as JUnit.

2.5 Supplementary Material
o Tutorials Group UNIT TESTING

 Name: “Unit test with JUnit”
 Locations:

1. https://www.vogella.com/tutorials/JUnit/article.html#:~:text=A%20unit%20test%
20is%20a,a%20method%20or%20a%20class.

2. https://www.guru99.com/junit-tutorial.html
 Name: “JUnit Testing in Eclipse”
 Location: https://www.youtube.com/watch?v=v2F49zLLj-8 (8’55)

o Course Video Clip
 Name: “What is a Unit Test” … with code example!
 Location: https://www.youtube.com/watch?v=4B4oKc7Cjdk (4’01)

o Course Video Clip
 Name: “Introduction to Scrum - 7 Minutes”
 Location: https://www.youtube.com/watch?v=9TycLR0TqFA

o Course Video Clip Group AGILE
 Name: “What is Agile?”
 Location: https://www.youtube.com/watch?v=Z9QbYZh1YXY&vl=de

SOFTWARE TESTING COMPENDIUM February 8, 2021

13

 Name: SAFe 5.0 Overview in Five Minutes
 Location: https://www.youtube.com/watch?v=aW2m-BtCJyE
 Name: “What is Unit Testing? - Software Testing Tutorial”
 Location: https://youtu.be/lj5nnGa_DIw

2.6 Exercises

1. Given is “safety-critical industrial control software is tested differently from an e-commerce mobile app”.
Recherche in internet and compose a 1-page discussion why and how they should be tested differently.
Consider test objectives, test process, test tools and test people.

2. Given is “testing in an Agile project is done differently than testing in a sequential software development
lifecycle project”. Compose a 1-page comparison of both types of project focusing on objectives, process,
tools and test people.

3. Show on which side of the V-Model the “Verification” and “Validation” are performed. Explain why.

4. What do you as a tester do if a requirement is not testable? Give such a requirement and propose 3
solution approaches, if possible, interview the testers in your company.

SOFTWARE TESTING COMPENDIUM February 8, 2021

14

3 Concepts and Definitions

3.1 Fundamental Test Process
ISTQB 2018 Syllabus Topic Ch. 1.4 Test Process

A generic software test process comprises common sets of test activities, “without which testing will be less likely
to achieve its established objectives”.

FIGURE 4 ISTQB FUNDAMENTAL TEST PROCESS

Dynamic Test Process: The activities “test design & implementation”, “test execution and reporting” in Figure 4
build the dynamic part of the process and thus they are performed in iterations to deliver a verified/validated
increment of the software.

“A test process consists of the following main groups of activities: “

 “Test planning: involves activities that define the objectives of testing and the approach for meeting test
objectives“ according to a “test schedule for meeting a deadline.“ Test plans are changed “based on
feedback from monitoring and control activities.
Test planning activities may include the following

o Determining the scope, objectives, and risks of testing …
o Integrating and coordinating the test activities into the software lifecycle activities,
o Making decisions about what to test, the people and [required] resources,
o Scheduling of test analysis, design, implementation, execution, and evaluation activities, either on

dates (e.g., in sequential development) or in the context of each iteration, (e.g., in iterative
development)

o Selecting metrics for test monitoring and control,
o Budgeting for the test activities,
o Determining the level of detail and structure for test documentation (e.g., by providing templates

or example documents)
 Test monitoring and control: involves the on-going comparison of actual progress against planned

progress using any test monitoring metrics defined in the test plan. Test control involves taking actions
necessary to meet the objectives of the test plan (which may be updated over time). Test monitoring and
control are supported by the evaluation of exit criteria, which are referred to as the definition of done in

SOFTWARE TESTING COMPENDIUM February 8, 2021

15

some software development lifecycle models.
For example, the evaluation of exit criteria for test execution as part of a given test level may include:

o Checking test results and logs against specified coverage criteria,
o Assessing the level of component or system quality based on test results and logs,
o Determining if more tests are needed (e.g., if tests originally intended to achieve a certain level of

product risk coverage failed to do so, requiring additional tests to be written and executed)
 Test analysis: determines “what to test” in terms of measurable coverage criteria.” Analogous to

requirements analysis, the test basis is analyzed to determine what to validate and verify, and to define
required product quality. “Test analysis includes the following major activities:

o Analyzing the test basis” such as Requirement specifications, Design and implementation
information, the implementation of the component or system itself, and Risk analysis reports,
“which may consider functional, non-functional, and structural aspects of the component or
system”

o Evaluating the test basis4 and test items to identify defects of various types, such as Ambiguities,
Omissions, Inconsistencies, Inaccuracies, Contradictions, Superfluous statements,

o Identifying features and sets of features to be tested,
o Defining and prioritizing test conditions5 for each feature,
o Capturing bi-directional traceability between each element of the test basis and the associated

test conditions.

The application of black-box, white-box, and experience-based test techniques can be useful in the
process of test analysis to reduce the likelihood of omitting important test conditions and to define
more precise and accurate test conditions.

 Test design: During test design, the test conditions are elaborated into high-level test cases So, test
analysis answers the question “what to test?” while test design answers the question “how to test?”
Test design includes the following major activities:

o Designing and prioritizing test cases and sets of test cases
o Identifying necessary test data to support test conditions and test cases
o Designing the test environment and identifying any required infrastructure and tools
o Capturing bi-directional traceability between the test basis, test conditions, and test cases

The elaboration of test conditions into test cases and sets of test cases during test design often involves
using test techniques (see “test technique black-box”).

 Test implementation: During test implementation,” test procedures including test cases are created.
”Test design answers the question “how to test?” while test implementation answers the question “do we
now have everything in place to run the tests?”
Test implementation includes the following major activities:

o Developing and prioritizing test procedures …
o Creating test suites6 from the test procedures …
o Building the test environment (including, potentially, test harnesses7, service virtualization,

simulators, and other infrastructure items) …

4 “Test basis: All documents from which the requirements of a component or system can be inferred. The documentation on
which the test cases are based…”[ISTQBterms]
5 “Test condition: An item or event of a component or system that could be verified by one or more test cases, e.g. a function,
transaction, feature, quality attribute, or structural element.” [ISTQBterms]
6 “Test suite: A set of several test cases for a component or system under test, where the post condition of one test is often
used as the precondition for the next one. “[ISTQBterms]
7 “Test harness: A test environment comprised of stubs and drivers needed to execute a test.” [ISTQBterms]

SOFTWARE TESTING COMPENDIUM February 8, 2021

16

o Preparing test data …
o Verifying and updating bi-directional traceability between the test basis, test conditions, test

cases, test procedures, and test suites (see section “Traceability”)

Test design and test implementation tasks are often combined.

 Test execution: During test execution, test suites are run in accordance with the test execution schedule.
Test execution includes the following major activities:

o Recording the IDs and versions of the test item(s) or test object, test tool(s), and” test data
o “Executing tests either manually or by using test execution tools
o Comparing actual results with expected results” to detect anomalies
o “Analyzing anomalies to establish their likely causes …” e.g., defects
o Reporting defects based on the failures observed …
o Logging the outcome of test execution (e.g., pass, fail, blocked) …
o Verifying and updating bi-directional traceability between the test basis, test conditions, test

cases, test procedures, and test results.

 Test completion: Test completion activities collect data from completed test activities ... Test completion
activities occur at project milestones such as when a software system is released, a test project is
completed (or cancelled), an Agile project iteration is finished, a test level is completed, or a maintenance
release has been completed.

Test completion includes the following major activities:

o Checking whether all defect reports are closed…
o Creating a test summary report to be communicated to stakeholders”,
o Archive the test environment, the test data, the test infrastructure, and other test relevant

artefacts for later reuse,
o “Handing over” the test archive “to the maintenance teams ,
o Analyzing lessons learned from the completed test activities” to improve “test process maturity.”

3.2 Test Work Products
ISTQB 2018 Syllabus Topic Ch. 1.4.3 Test Work Products

In general, a work product8 is any kind of material which a worker has created and developed while working. In
specific, a test work product9 is any kind of material which a tester or test manager has created and developed
during the test process phases. For example

 “Test planning work products typically include one or more test plans”, where “the test plan includes
information about the test basis, to which the other test work products will be related via traceability
information …

 Test monitoring and control work products typically include various types of test reports, including test
progress reports produced … on regular basis, and test summary reports produced at various completion
milestones.

 Test analysis work products include defined and prioritized test conditions, each of which is ideally
bidirectionally traceable to the specific element(s) of the test basis it covers. …”

 Test design work products include “test cases and sets of test cases …., test data, design of the test
environment” and “the identification of infrastructure and tools.

8 Work product is the result of the activities of the corresponding test process phase!
9 Test Work Products comprise a section in the Testing Document!

SOFTWARE TESTING COMPENDIUM February 8, 2021

17

 Test implementation work products include test procedures and the sequencing of those test procedures,
test suites and a test execution schedule…

 Test execution work products include the status of individual test cases e.g., ready to run, pass, fail,
blocked, deliberately skipped, etc.

 Test completion work products include test summary reports…”

3.3 Traceability
ISTQB 2018 Syllabus Topic Ch. 1.4.4 Traceability between the Test Basis and Test Work Products

“In order to implement effective test monitoring and control, it is important to establish and maintain [bi-
directional] traceability throughout the test process between each element of the test basis and the various test
work products associated with that element.

Good traceability supports:

 Analyzing the impact of changes, …
 Providing information to assess product quality, process capability, and project progress against business

goals

As an example, the Figure 5 shows the downstream traceability of the system requirements and use cases.

FIGURE 5 TRACEABILITY OF THE SYSTEM REQUIREMENTS AND USE CASES

3.4 Test Levels
ISTQB 2018 Syllabus Topic Ch. 2.2 Test Levels

“Test levels are groups of test activities that are organized and managed together.

The test levels used in this syllabus are:

 Component testing
 Integration testing
 System testing
 Acceptance testing

SOFTWARE TESTING COMPENDIUM February 8, 2021

18

FIGURE 6 V-MODEL ILLUSTRATED FOR TEST LEVELS

“Each test level is an instance of the test process … at a given level of [software] development. Test levels are
related to other activities within the software development lifecycle”, for example, the horizontal
validation/verification of software work products in V-Model.

“Test levels are characterized by the following attributes:

 Specific objectives
 Test basis, referenced to derive test cases
 Test object (i.e., what is being tested)
 Typical defects and failures
 Specific approaches and responsibilities”
 Appropriate test environment

SOFTWARE TESTING COMPENDIUM February 8, 2021

19

FIGURE 7 GENERIC TEST LEVEL

Component testing
“Objectives

 Reducing risk,
 Verifying the functional and non-functional behaviors of the component
 Building confidence in the component’s quality
 Finding defects in the component
 Preventing defects from escaping to higher test levels

Test basis

 Detailed design
 Code
 Data model
 Component specifications

Test object

 Components, units or modules
 Code and data structures
 Classes
 Database modules

Typical defects and failures

 Incorrect functionality (e.g., not as described in design specifications)
 Data flow problems
 Incorrect code and logic

Specific approaches and
responsibilities

 Component testing is performed by the developer
 Developers write and execute tests after having written the code for a

component.”
 Developers write and execute automated tests prior to written code

(Agile development, Test-driven Development)

TABLE 1 COMPONENT TESTING CHARACTERISTICS

SOFTWARE TESTING COMPENDIUM February 8, 2021

20

Integration testing
“Objectives

 Reducing risk,
 Verifying the functional and non-functional behaviors of the interfaces
 Building confidence in the interfaces’ quality
 Finding defects in the interfaces and components
 Preventing defects from escaping to higher test levels

Test basis

 Software and system design
 Sequence diagrams
 Interface and communication protocol specifications
 Use cases
 Architecture at component or system level
 Workflows
 External interface definitions

Test object

 Subsystems
 Databases
 Infrastructure
 Interfaces
 APIs
 Microservices

Typical defects and failures

Component integration testing:
 Incorrect data, missing data, or incorrect data encoding
 Incorrect sequencing or timing of interface calls
 Interface mismatch
 Failures in communication between components
 … communication failures between components

System integration testing:
 Inconsistent message structures between systems
 Incorrect data, missing data, or incorrect data encoding
 Interface mismatch
 Failures in communication between systems
 … communication failures between systems

Specific approaches and
responsibilities

 Component integration tests and system integration tests should
concentrate on the integration itself.

 Tests should focus on the communication between the modules”
(Interoperability),” not the functionality of the individual modules

 Component integration testing is often the responsibility of developers.
System integration testing is generally the responsibility of [system]
testers.

 Integration should be incremental
 A risk analysis of the most complex interfaces can help to focus the

integration testing.
 continuous integration, where software is integrated on a component-

by-component basis (i.e., functional integration), has become common
practice.

 Continuous integration often includes automated regression testing,
ideally at multiple test levels.”

TABLE 2 INTEGRATION TESTING CHARACTERISTICS

SOFTWARE TESTING COMPENDIUM February 8, 2021

21

System testing
“Objectives

 Reducing risk,
 Verifying the functional and non-functional behaviors of the system
 Validating that the system is complete and will work as expected
 Building confidence in the quality of the system as a whole
 Finding defects
 Preventing defects from escaping to higher test levels or production
 For certain systems, verifying data quality may also be an objective.

Test basis

 System and software requirement specifications (functional and non-
functional)

 Risk analysis reports
 Use cases
 Epics and user stories
 Models of system behavior
 State diagrams
 System and user manuals

Test object

 Applications
 Hardware/software systems
 Operating systems
 System under test (SUT)
 System configuration and configuration data

Typical defects and failures

 Incorrect calculations
 Incorrect or unexpected system functional or non-functional behavior
 Incorrect control and/or data flows within the system
 Failure to properly and completely carry out end-to-end functional

tasks
 Failure of the system to work properly in the system environment(s)
 Failure of the system to work as described in system and user manuals

Specific approaches and
responsibilities

 System testing should focus on the overall, end-to-end behavior of the
system as a whole, both functional and non-functional.

 System testing should use the most appropriate techniques”, like Black-
box Testing

 System testing is typically carried out by independent testers who rely
heavily on specifications.

 Early involvement of testers in user story refinement or static testing
activities, such as reviews, helps to reduce the incidence” lists.

TABLE 3 SYSTEM TESTING CHARACTERISTICS

Acceptance Testing
“Objectives

 Establishing confidence in the quality of the system as a whole
 Validating that the system is complete and will work as expected
 Verifying that functional and non-functional behaviors of the system

are as specified
 Acceptance testing may also satisfy legal or regulatory requirements or

standards.
 Acceptance testing may produce information to assess the system’s

readiness for deployment and use by the customer (end-user)

SOFTWARE TESTING COMPENDIUM February 8, 2021

22

Test basis

 Business processes
 User or business requirements
 Regulations, legal contracts and standards
 Use cases and/or user stories
 System requirements
 System or user documentation
 Installation procedures
 Risk analysis reports

Test object

 System under test
 System configuration and configuration data
 Business processes for a fully integrated system
 Recovery systems and hot sites (for business continuity and disaster

recovery testing)
 Operational and maintenance processes
 Forms
 Reports
 Existing and converted production data

Typical defects and failures

 Defects may be found during acceptance testing, but finding defects is
not a goal in this testing level.

 System workflows do not meet business or user requirements
 Business rules are not implemented correctly
 System does not satisfy contractual or regulatory requirements
 Non-functional failures such as security vulnerabilities, inadequate

performance efficiency under high loads, or improper operation on a
supported platform

Specific approaches and
responsibilities

 Acceptance testing is often the responsibility of the customers, business
users, product owners, or operators of a system, and other
stakeholders may be involved as well.

TABLE 4 ACCEPTANCE TESTING CHARACTERISTICS

3.5 Test Types
ISTQB 2018 Syllabus Topic Ch. 2.3 Test Types

“A test type is a group of test activities aimed at testing specific characteristics of a software system, or a part of a
system, based on specific test objectives.” The characteristics of a software system is also known as the quality
attributes of a software system.

The test types used in this syllabus are:

 Functional Testing
 Non-Functional Testing
 White-box Testing
 Change-related Testing

Functional Testing

“Functional testing of a system involves tests that evaluate functions that the system should perform.”

Functional testing is the testing of “HOW” the system behaves.

SOFTWARE TESTING COMPENDIUM February 8, 2021

23

The test objective is to “evaluate functional quality characteristics, such as completeness, correctness, and
appropriateness of the software. Functional tests should be performed at all test levels (e.g., tests for
components may be based on a component specification), though the focus is different at each level (see
Ch. Test Level).

Functional testing considers the behavior of the software, so black-box techniques (see Ch. “Black-box
Techniques”) may be used to derive test conditions10 and test cases11 for the functionality.

Non-functional Testing

Non-functional testing of a system evaluates characteristics of systems and software such as usability,
performance efficiency or security.”

Non-functional testing is the testing of “HOW WELL” the system behaves.

The test objective is to “evaluate non-functional quality characteristics, such as reliability, performance,
efficiency, security, compatibility, and usability. Non-functional testing can and often should be performed
at all test levels and done as early as possible. The late discovery of non-functional defects can be
extremely dangerous to the success of a project.

Black-box techniques12 may be used to derive test conditions and test cases for nonfunctional testing.

White-box Testing

White-box testing derives tests based on the system’s internal structure or implementation. Internal
structure may include code, architecture, work flows, and/or data flows within the system.”

The test objective is to “evaluate whether the structure or architecture of the component or system is
correct, complete, and as specified.

The thoroughness of white-box testing can be measured through structural coverage. At the component
testing level, code coverage13 is based on the percentage of component code that has been tested.” At the
component integration testing level, structural coverage is based on the percentage of component
interfaces exercised by tests.

“Change-related Testing

When changes are made to a system, either to correct a defect or because of new or changing
functionality, testing should be done to confirm that the changes have corrected the defect or
implemented the functionality correctly.”

The test objective is to “evaluate the effects of changes, such as confirming that defects have been fixed
(confirmation testing) and looking for unintended changes in behavior resulting from software or
environment changes (regression testing).

10 “Test condition: An item or event of a component or system that could be verified by one or more test cases, e.g., a
function, transaction, feature, quality attribute, or structural element.” [ISTQBterm]
11 “Test case : A set of input values, execution preconditions, expected results and execution postconditions, developed for a
particular objective or test condition, such as to exercise a particular program path or to verify compliance with a specific
requirement.” [ISTQBterm]
12 “Black-box test design technique: Procedure to derive and/or select test cases based on an analysis of the specification,
either functional or non-functional, of a component or system without reference to its internal structure.” [ISTQBterm]
13 “Code coverage: An analysis method that determines which parts of the software have been executed (covered) by the test
suite and which parts have not been executed, e.g., statement coverage, decision coverage or condition coverage.”
[ISTQBterm]

SOFTWARE TESTING COMPENDIUM February 8, 2021

24

 Confirmation testing: The purpose of a confirmation test is to confirm whether the original defect
has been successfully fixed. After a defect is fixed, the software may be tested with all test cases
that failed due to the defect [and] may also be tested with new tests to cover changes needed to
fix the defect.

 Regression testing: Regression testing involves running tests to detect such unintended side-
effects. Such unintended side-effects are called regressions. It is possible that a change made in
one part of the code, whether a fix or another type of change, may accidentally affect the
behavior of other parts of the code, whether within the same component, in other components of
the same system, or even in other systems. Regression tests are run many times and generally
evolve slowly, so regression testing is a strong candidate for automation.

Confirmation testing and regression testing are performed at all test levels.

3.6 Supplementary Material

o Course Video Clip
 Name: “Gear Inc. Software Testing Life Cycle”
 Location: https://www.youtube.com/watch?v=KW6F7aS9rSg (3’42)

o Course Video Clip
 Name: “How to write a TEST CASE? Software Testing Tutorial”
 Location: https://www.youtube.com/watch?v=BBmA5Qp6Ghk (3’30)

o Course Video Clip
 Name: “Acceptance Testing & System Testing - Software Testing Tutorial”
 Location: https://youtu.be/N8-qNMHOVyw

o Course Video Clip
 Name: “What is Integration Testing? Software Testing Tutorial”
 Location: https://youtu.be/QYCaaNz8emY

o Course Video Clip
 Name: “What is Regression Testing? Software Testing Tutorial”
 Location: https://youtu.be/aeu5zacsHsI

o Course Video Clip
 Name: “What is Test Scenario? How to write Test Scenario: Software Testing Tutorial”
 Location: https://youtu.be/wMN0pCyjQ9E

o Course Video Clip
 Name: “What is Test Basis ? Software Testing”
 Location: https://youtu.be/zz34cEC8Z4c

o Course Video Clip
 Name: “What is Manual Testing ?”
 Location: https://youtu.be/xCwkjZcEK6w

o Course Video Clip
 Name: “How Testing is Different in an Agile Project”
 Location: https://youtu.be/xdak981_v3g

o Course Video Clip Group “Test-driven Development”
 Name: “JUnit 5 Basics 12 - Test driven development with JUnit” 5’00
 Location: https://youtu.be/zFJdQYn9u_8
 Name: “Test Driven Development Techniques - Part 1” 20’00
 Location: https://youtu.be/rQDlahWgOpk
 Name: “Test Driven Development Techniques - Part 2” 23’00

SOFTWARE TESTING COMPENDIUM February 8, 2021

25

 Location: https://youtu.be/AqFZ6mmCws8
o Course Video Clip

 Name: Requirement Traceability Matrix (RTM) in Software Testing
 Location: https://www.youtube.com/watch?v=cm-cSW66Isc&list=PLDC2A0C8D2EC934C7

3.7 Exercises

1. If not already selected, select a concrete software system that you acquainted with, e.g. , a Social Media App,
Bookstore App, a Shopping App, Embedded System App, etc. and use it as a context for the below exercises.
a) Extend the test level characteristics table of each test level with concrete examples.
b) Describe Testing in Agile Software Development
c) Describe Test-driven Development

2. Describe and illustrate in your own words the Component integration testing using other sources as ISTQB

(2 pages with illustration)

3. Describe and illustrate in your own words the System integration testing using non-ISTQB sources.
(2 pages with illustration)

4. Illustrate and compare in your own words the difference between Component Integration testing and System
integration testing in ISTQB

5. Describe the benefits of planning the software integration testing using non-ISTQB sources.

6. Given is the following class to calculate a total price

import java.lang.Double;
import java.lang.Integer;

public class CalculatePrice {

 public Double calculateTotalPrice(Double basePrice,
 Double specialPrice,
 Double extraPrice,
 Integer extras,
 Double discount) {

 Double addonDiscount;
 Double result;

 if (extras >= 3) addonDiscount = 10;
 else if (extras >= 5) addonDiscount = 15;
 else addonDiscount = 0;

 if (discount > addonDiscount)
 addonDiscount = discount;
 result = basePrice/100.0*(100-discount)
 + specialPrice
 + extraPrice/100.0*(100-addonDiscount);
 return result;
 }
}

TABLE 5 CODE SAMPLE : CLASS CALCULATE

SOFTWARE TESTING COMPENDIUM February 8, 2021

26

The class method contains a defect: The path “if (extras >= 5)” is not reachable. Such defects are detected by
white box analysis

Write a test case to test this class in pseudocode! Explain in which Test Level you test the program and why!

7. “The late discovery of non-functional defects can be extremely dangerous to the success of a project.”

Argue why this statement is true especially for non-functional requirements of the system! You may use non-
ISTQB sources!

8. “It is possible to perform any of the test types mentioned above at any test level. “

For an application of your choice, give examples of functional, non-functional, white-box, and change-related
tests for a test level of your choice. Use Ch. 2.3.5 in [ISTQB2018] as a reference.

SOFTWARE TESTING COMPENDIUM February 8, 2021

27

4 Static Testing
ISTQB 2018 Syllabus Topic Ch. 3 Static Testing

The objective of static testing, just like the other testing activities, is to identify defects. The static testing
succeeds particularly well this objective in the early phases in the software development process, even before a
line of code is implemented. to reduce or eliminate costly changes and thus improve the software quality
attributes.

4.1 Characteristics
“In contrast to dynamic testing, which requires the execution of the software being
tested, static testing relies on the manual examination of work products (i.e.,
reviews) or tool-driven evaluation of the code or other work products (i.e., static
analysis). Both types of static testing assess the code or other work product being
tested without actually executing the code or work product being tested.”

Static analysis
Review

Almost any work product can be examined using static testing (reviews and/or
static analysis), for example:”

 Requirements specification
 “Epics, user stories, and acceptance criteria,
 Architecture and design specifications, [and] code”
 Test work products,
 User manuals,
 “Web pages,
 Contracts, project plans, schedules, and budget planning
 Configuration set up and infrastructure set up
 Models”, e.g., UML diagrams

Work products under
static testing

Differences between Static and Dynamic Testing

“Static testing and dynamic testing can have the same objectives, such as providing an assessment of the quality
of the work products and identifying defects as early as possible.

Static and dynamic testing complement each other by finding different types of defects.”

The main distinctions are

 “Static testing finds defects in work products directly rather than identifying failures caused by defects
when the software is run. A defect can reside in a work product for a very long time without causing a
failure” because the defective code is never executed.

 “Static testing can be used to improve the consistency and internal quality of work products, while
dynamic testing typically focuses on externally visible behaviors.”

 “Compared with dynamic testing, … defects … are easier and cheaper to find and fix through static
testing” such as

o Requirement defects
o Design defects (e.g., inefficient algorithms or database structures, high coupling, low cohesion)
o Coding defects (e.g., variables with undefined values, variables that are declared but never used,

unreachable code, duplicate code)
o Deviations from standards (e.g., lack of adherence to coding standards)
o Incorrect interface specifications (e.g., different units of measurement used by the calling system

than by the called system)

SOFTWARE TESTING COMPENDIUM February 8, 2021

28

o Security vulnerabilities (e.g., susceptibility to buffer overflows)
o Gaps or inaccuracies in test basis traceability or coverage (e.g., missing tests for an acceptance

criterion)”

The latter one, a.k.a. the requirements traceability review, is one of the most important static testing activities
during the development of safety critical systems like airplane, cars, and trains.

Reviews

“Reviews vary from informal to formal. Informal reviews are characterized by not following a defined process and
not having formal documented output. Formal reviews are characterized by team participation, documented
results of the review, and documented procedures for conducting the review.

The formality of a review process is related to factors such as the software development lifecycle model, the
maturity of the development process, the complexity of the work product to be reviewed, any legal or regulatory
requirements, and/or the need for an audit trail.

The focus of a review depends on the agreed objectives of the review (e.g., finding defects, gaining understanding,
educating participants such as testers and new team members, or discussing and deciding by consensus).”

4.2 Supplementary Material

o Course Video Clip
 Name: “What is Static Testing? What is a Review: Software Testing Tutorial 5’40
 Location: https://youtu.be/YosSY0e5Xy4

o Course Video Clip
 Name: “Code Collaborator v5.0 - Five Minute Demo” (CODE REVIEW TOOL) 5’00
 Location: https://youtu.be/R-nNuMuuLT4

o Course Video Clip
 Name: “Java Clean Code Tutorial #2 - Static Analysis FindBugs Eclipse Plugin Setup”

(STATIC ANALYSIS TOOL for ECLIPSE) 5’00
 Location: https://youtu.be/IvNC6-k5xT8

4.3 Exercises
This section intentionally left blank!

SOFTWARE TESTING COMPENDIUM February 8, 2021

29

5 Test Techniques
ISTQB 2018 Syllabus Topic Ch. 4 Test Techniques

“The purpose of a test technique is to help in identifying test conditions, test cases, and test data. The choice of
which test techniques to use depends on a number of factors.” Most commons are:

 “Component or system complexity
 Risk levels and types
 Time and budget, [and]
 The types of defects expected in the component or system”

In [ISTQB 2018] “test techniques are classified as black-box, white-box, or experience-based”. The first two
techniques are described in the proceeding sections in detail.

“Experience-based test techniques leverage the experience of developers, testers and users to design, implement,
and execute tests. These techniques are often combined with black-box and white-box test techniques. Commonly
used experience-based techniques are” “Error Guessing”, “Exploratory Testing” and “Checklist-based Testing”.
Application of one or all techniques in a software project depends on the project type, product type and maturity
of experienced testers. A characteristic of this technique is that “test conditions, test cases, and test data are
derived from a test basis that may include knowledge and experience of testers, developers, users and other
stakeholders.”

5.1 Black-box Test Techniques
ISTQB 2018 Syllabus Topic Ch. 4.2 Black-box Test Techniques

“Black-box test techniques (also called behavioral or behavior-based techniques) are based on an analysis of the
appropriate test basis (e.g., formal requirements documents, specifications, use cases, user stories, or business
processes). These techniques are applicable to both functional and nonfunctional testing. Black-box test
techniques concentrate on the inputs and outputs of the test object without reference to its internal structure.

Characteristics of this technique are

 “Test conditions, test cases, and test data are derived from a test basis that may include software
requirements, specifications, use cases, and user stories, [and]

 coverage is measured based on the items tested in the test basis and the technique applied to the test
basis.”

FIGURE 8 5.1 BLACK-BOX TEST

Some of the black-box techniques are described in the proceeding sections.

SOFTWARE TESTING COMPENDIUM February 8, 2021

30

5.1.1 Equivalence Partitioning

“Equivalence partitioning divides data into partitions (also known as equivalence classes) in such a way that all the
members of a given partition are expected to be processed in the same way.

There are equivalence partitions for both valid and invalid values.

Valid values are values that should be accepted by the component or system.

An equivalence partition containing valid values is called a “valid equivalence partition.”

Invalid values are values that should be rejected by the component or system.

An equivalence partition containing invalid values is called an “invalid equivalence partition.”

FIGURE 9 BLACK-BOX TEST TECHNIQUE - EQUIVALENCE PARTITIONING

Partitions can be identified for any data element related to the test object, including inputs, outputs, internal
values, time-related values (e.g., before or after an event) and for interface parameters (e.g., integrated
components being tested during integration testing).

Each [valid and invalid] value must belong to one and only one equivalence partition.

FIGURE 10 EQUIVALENCE PARTITIONING - EXAMPLE

SOFTWARE TESTING COMPENDIUM February 8, 2021

31

When invalid equivalence partitions are used in test cases, they should be tested individually, i.e., not combined
with other invalid equivalence partitions, to ensure that failures are not masked.

To achieve 100% coverage with this technique, test cases must cover all identified partitions (including invalid
partitions) by using a minimum of one value from each partition.

Coverage is measured as the number of equivalence partitions tested by at least one value, divided by the total
number of identified equivalence partitions, normally expressed as a percentage.

Equivalence partitioning is applicable at all test levels.

5.1.2 Boundary Value Analysis

“Boundary value analysis (BVA) is an extension of equivalence partitioning but can only be used when the partition
is ordered, consisting of numeric or sequential data. The minimum and maximum values (or first and last values)
of a partition are its boundary values.

FIGURE 11BLACK-BOX TEST TECHNIQUE - BOUNDARY VALUE ANALYSIS

For example, suppose an input field accepts a single integer value as an input, using a
keypad to limit inputs so that non-integer inputs are impossible.
The valid range is from 1 to 5, inclusive.
So, there are three equivalence partitions:

 invalid (too low);
 valid;
 invalid (too high).

For the valid equivalence partition, the boundary values are 1 and 5.
For the invalid (too high) partition, the boundary value is 6.
For the invalid (too low) partition, there is only one boundary value, 0, because this is a
partition with only one member.

Example

In the example above, we identify two boundary values per boundary. The boundary between invalid (too low) and
valid gives the test values 0 and 1. The boundary between valid and invalid (too high) gives the test values 5 and 6.

SOFTWARE TESTING COMPENDIUM February 8, 2021

32

Some variations of this technique identify three boundary values per boundary: the values before, at, and just over
the boundary. In the previous example, using three-point boundary values, the lower boundary test values are 0, 1,
and 2, and the upper boundary test values are 4, 5, and 6.

Behavior at the boundaries of equivalence partitions is more likely to be incorrect than behavior within the
partitions. “

“It is important to remember that both specified and implemented boundaries may
be displaced to positions above or below their intended positions, may be omitted
altogether, or may be supplemented with unwanted additional boundaries.
Boundary value analysis and testing will reveal almost all such defects by forcing the
software to show behaviors from a partition other than the one to which the
boundary value should belong.”

Benefit

Boundary value analysis can be applied at all test levels.

This technique is generally used to test requirements that call for a range of numbers (including dates and times).

Boundary coverage for a partition is measured as the number of boundary values tested, divided by the total
number of identified boundary test values, normally expressed as a percentage.

FIGURE 12 BOUNDARY VALUE ANALYSIS - EXAMPLE

5.1.3 State Transition Testing

“Components or systems may respond differently to an event depending on current conditions ... A state transition
diagram shows the possible software states, as well as how the software enters, exits, and transitions between
states.

A transition is initiated by an event (e.g., user input of a value into a field). The event results in a transition. The
same event can result in two or more different transitions from the same state.

The state change may result in the software taking an action (e.g., outputting a calculation or error message).

SOFTWARE TESTING COMPENDIUM February 8, 2021

33

A state transition table shows all valid transitions and potentially invalid transitions between states, as well as the
events, and resulting actions for valid transitions.

FIGURE 13 BLACK-BOX TEST TECHNIQUE - STATE TRANSITION TESTING

State transition diagrams normally show only the valid transitions and exclude the invalid transitions.

Tests can be designed to cover a typical sequence of states, to exercise all states, to exercise every transition, to
exercise specific sequences of transitions, or to test invalid transitions.

State transition testing is used for menu-based applications and is widely used within the embedded software
industry.

The concept of a state is abstract – it may represent a few lines of code or an entire business process.

Coverage is commonly measured as the number of identified states or transitions tested, divided by the total
number of identified states or transitions in the test object, normally expressed as a percentage.

SOFTWARE TESTING COMPENDIUM February 8, 2021

34

FIGURE 14 STATE TRANSITION TESTING - EXAMPLE

5.1.4 Use Case Testing
Tests can be derived from use cases, which are a specific way of designing interactions with software items. They
incorporate requirements for the software functions.

Use cases are associated with actors (human users, external hardware, or other components or systems) and
subjects (the component or system to which the use case is applied).

Each use case specifies some behavior that a subject can perform in collaboration with one or more actors14
(authors note).

A use case can be described by interactions and activities, as well as preconditions, postconditions and natural
language where appropriate. Interactions between the actors and the subject may result in changes to the state of
the subject. Interactions may be represented graphically by work flows, activity diagrams, or business process
models.

14 “User or any other person or system that interacts with the system under test in a specific way.” [ISTQBterm]

SOFTWARE TESTING COMPENDIUM February 8, 2021

35

FIGURE 15 BLACK-BOX TEST TECHNIQUE - USE CASE TESTING

A use case can include possible variations of its basic behavior, including exceptional behavior and error handling
(system response and recovery from programming, application and communication errors, e.g., resulting in an
error message). Tests are designed to exercise the defined behaviors (basic, exceptional or alternative, and error
handling).

FIGURE 16 USE CASE TESTING

Coverage can be measured by the number of use case behaviors tested divided by the total number of use case
behaviors, normally expressed as a percentage.

SOFTWARE TESTING COMPENDIUM February 8, 2021

36

5.2 White-box Test Techniques
ISTQB 2018 Syllabus Topic Ch. 4.3 White-box Test Techniques

“White-box test techniques (also called structural or structure-based techniques) are based on an analysis of the
architecture, detailed design, internal structure, or the code of the test object. Unlike black-box test techniques,
white-box test techniques concentrate on the structure and processing within the test object.”

Characteristics of this technique are “

 Test conditions, test cases, and test data are derived from a test basis that may include code, software
architecture, detailed design, or any other source of information regarding the structure of the software,
[and]

 coverage is measured based on the items tested within a selected structure (e.g., the code or interfaces)
and the technique applied to the test basis.”

“White-box testing is based on the internal structure of the test object. White-box test techniques can be used at
all test levels, but the two code-related techniques discussed in this section are most commonly used at the
component test level.”

Statement Testing and Coverage

Statement testing exercises the potential executable statements in the code.

Coverage is measured as the number of statements executed by the tests divided by the total number of
executable statements in the test object normally expressed as a percentage.

FIGURE 17 WHITE-BOX TEST TECHNIQUE - STATEMENT TESTING AND COVERAGE

FIGURE 18 STATEMENT COVERAGE METHOD

SOFTWARE TESTING COMPENDIUM February 8, 2021

37

FIGURE 19 STATEMENT COVERAGE EXAMPLE

Decision Testing and Coverage

Decision testing exercises the decisions in the code and tests the code that is executed based on the decision
outcomes. To do this, the test cases follow the control flows that occur from a decision point (e.g., for an IF
statement, one for the true outcome and one for the false outcome; for a CASE statement, test cases would be
required for all the possible outcomes, including the default outcome).

Coverage is measured as the number of decision outcomes executed by the tests divided by the total number of
decision outcomes in the test object, normally expressed as a percentage.

FIGURE 20 BRANCH COVERAGE METHOD

SOFTWARE TESTING COMPENDIUM February 8, 2021

38

FIGURE 21 BRANCH COVERAGE EXAMPLE

The Value of Statement and Decision Testing

When 100% statement coverage is achieved, it ensures that all executable statements in the code have been
tested at least once, but it does not ensure that all decision logic has been tested. Of the two white-box techniques
[above], statement testing may provide less coverage than decision testing.

When 100% decision coverage is achieved, it executes all decision outcomes, which includes testing the true
outcome and also the false outcome, even when there is no explicit false statement (e.g., in the case of an IF
statement without an else in the code).

Statement coverage helps to find defects in code that was not exercised by other tests.

Decision coverage helps to find defects in code where other tests have not taken both true and false outcomes.

Achieving 100% decision coverage guarantees 100% statement coverage (but not vice versa).

5.3 Supplementary Material

 Course Video Clip Group “Black-box Test Techniques”
o Name: Boundary Value Analysis and Equivalence Partitioning: Software Testing Tutorial
o Location:

https://www.youtube.com/watch?v=P1Hv2sUPKeM&list=PLDC2A0C8D2EC934C7&index=15
o Name: State Transition Testing: Software Testing Tutorial 17

SOFTWARE TESTING COMPENDIUM February 8, 2021

39

o Location:
https://www.youtube.com/watch?v=_Udjai_6b9Y&list=PLDC2A0C8D2EC934C7&index=17

o Name: Use Case Testing: Software Testing Tutorial 18
o Location:

https://www.youtube.com/watch?v=ijtvAvapsP0&list=PLDC2A0C8D2EC934C7&index=18

 Course Video Clip Group “White-box Test Techniques”
o Name: What is White Box Testing? Tutorial with Examples
o Location:

https://www.youtube.com/watch?v=3bJcvBLJViQ&list=RDCMUC19i1XD6k88KqHlET8atqFQ&index
=4

5.4 Exercises
This section intentionally left blank!

SOFTWARE TESTING COMPENDIUM February 8, 2021

40

6 Test Tools
ISTQB 2018 Syllabus Topic Ch. 6 Tool Support for Testing

6.1 Test Tools Basics

Supported Activities

“Test tools can be used to support one or more testing activities. Such tools include:

 Tools that are used
o directly in testing, such as test execution tools and test data preparation tools

 Tools that help to manage
o requirements, test cases, test procedures, automated test scripts, test results, test data, and

defects, and for reporting and monitoring test execution
 Tools that are used

o for analysis and evaluation.
 Any tool that assists

o in testing (a spreadsheet is also a test tool in this meaning)

Tool Classification

[Test] tools are classified according to the test activities that they support:

 Improve the efficiency of test activities by automating repetitive tasks or tasks that require significant
resources when done manually (e.g., test execution, regression testing)

 Improve the efficiency of test activities by supporting manual test activities throughout the test process
 Improve the quality of test activities by allowing for more consistent testing and a higher level of defect

reproducibility
 Automate activities that cannot be executed manually (e.g., large scale performance testing)
 Increase reliability of testing (e.g., by automating large data comparisons or simulating behavior)

In order to have a smooth and successful implementation, there are a number of things that ought to be
considered when selecting and integrating test execution and test management tools into an organization.

Test execution tools

Test execution tools execute test objects using automated test scripts. This type of tools often requires significant
effort in order to achieve significant benefits.

 Capturing test approach:
Capturing tests by recording the actions of a manual tester seems attractive, but this approach does not
scale to large numbers of test scripts. A captured script is a linear representation with specific data and
actions as part of each script. This type of script may be unstable when unexpected events occur and
require ongoing maintenance as the system’s user interface evolves over time.

 Data-driven test approach:
This test approach separates out the test inputs and expected results, usually into a spreadsheet, and uses
a more generic test script that can read the input data and execute the same test script with different
data.

 Keyword-driven test approach:
This test approach, a generic script processes keywords describing the actions to be taken (also called
action words), which then calls keyword scripts to process the associated test data.

SOFTWARE TESTING COMPENDIUM February 8, 2021

41

Regardless of the scripting technique used, the expected results for each test need to be compared to actual
results from the test, either dynamically (while the test is running) or stored for later (post-execution) comparison.

Test management tools

Test management tools often need to interface with other tools or spreadsheets for various reasons, including:

 To produce useful information in a format that fits the needs of the organization
 To maintain consistent traceability to requirements in a requirements management tool
 To link with test object version information in the configuration management tool

This is particularly important to consider when using an integrated tool (e.g., Application Lifecycle Management),
which includes a test management module, as well as other modules (e.g., project schedule and budget
information) that are used by different groups within an organization.”

6.2 Supplementary Material
 Tutorials

o Name: “Java Code Coverage for Eclipse”
o Location: https://www.eclemma.org/index.html

6.3 Exercises

1. Find and evaluate a test tool that supports “Capturing test approach”. Document the result of your evaluation
in 3 – 5 MS PowerPoint slides.

2. Find and evaluate a test tool that supports “Data-driven test approach”. Document the result of your
evaluation in 3 – 5 MS PowerPoint slides.

3. Find and evaluate a test tool that supports “Keyword-driven test approach”. Document the result of your
evaluation in 3 – 5 MS PowerPoint slides.

SOFTWARE TESTING COMPENDIUM February 8, 2021

42

7 Risks and Testing
ISTQB 2018 Syllabus Topic Ch. 5.5 Risks and Testing

7.1 Risk Definition
 “Risk involves the possibility of an event in the future which has negative consequences. The level of risk is
determined by the likelihood of the event and the impact (the harm) from that event.

FIGURE 22 LEVELS OF RISKS IN MATRIX FORM [HSSE]

Risk matrix to measure the level of risk:
Risk (rating) = LIKELIHOOD x IMPACT

Side note: Probability is a synonym for
likelihood, and consequence (or severity) for
impact.

The risk matrix is domain-agnostic and may be used in any domain to determine the level of risk, but the levels of
probability and impact should be discussed for each risk to determine the appropriate actions to mitigate the risk.

In the following sections, the project and product risks are discussed in the software testing domain.

7.2 Product Risks

“Product risk involves the possibility that a work product (e.g., a specification, component, system, or test) may fail
to satisfy the legitimate needs of its users and/or stakeholders.

When the product risks are associated with specific quality characteristics of a product
(e.g., functional suitability, reliability, performance efficiency, usability, security,
compatibility, maintainability, and portability), product risks are also called quality risks.

Product quality

Examples of product risks include:

 Software might not perform its intended functions according to the specification
 Software might not perform its intended functions according to user, customer,

and/or stakeholder needs
 A system architecture may not adequately support some non-functional

requirement(s)
 A particular computation may be performed incorrectly in some circumstances
 A loop control structure may be coded incorrectly
 Response-times may be inadequate for a high-performance transaction

processing system
 User experience (UX) feedback might not meet product expectations”

Risk examples

7.3 Project Risks

“Project risk involves situations that, should they occur, may have a negative effect on a
project's ability to achieve its objectives.

Project objectives

SOFTWARE TESTING COMPENDIUM February 8, 2021

43

Examples of project risks include:

Risk examples

 Delays may occur in delivery, task completion, or satisfaction of exit criteria or
definition of done

 Inaccurate estimates, reallocation of funds to higher priority projects, or general
cost-cutting across the organization may result in inadequate funding

 Late changes may result in substantial re-work

Risky project issues

 Skills, training, and staff may not be sufficient
 Personnel issues may cause conflict and problems
 Users, business staff, or subject matter experts may not be available due to

conflicting business priorities

Risky organizational
issues

 Testers may not communicate their needs and/or the test results adequately
 Developers and/or testers may fail to follow up on information found in testing

and reviews (e.g., not improving development and testing practices)
 There may be an improper attitude toward, or expectations of, testing (e.g., not

appreciating the value of finding defects during testing)

Risky political issues

 Requirements may not be defined well enough
 The requirements may not be met, given existing constraints
 The test environment may not be ready on time
 Data conversion, migration planning, and their tool support may be late
 Weaknesses in the development process may impact the consistency or quality

of project work products such as design, code, configuration, test data, and test
cases

 Poor defect management and similar problems may result in accumulated
defects and other technical debt

Risky technical issues

 A third party may fail to deliver a necessary product or service, or go bankrupt
 Contractual issues may cause problems to the project”

Risky supplier issues

7.4 Risk-based Testing and Product Quality

“Risk is used to decide where and when to start testing and to identify areas that need more attention.

Testing is used to reduce the probability of an adverse event occurring, or to reduce the impact of an adverse
event.

Testing is used as a risk mitigation activity, to provide information about identified risks, as well as providing
information on residual (unresolved) risks.

A risk-based approach to testing provides proactive opportunities to reduce the levels of
product risk. It involves product risk analysis, which includes the identification of
product risks and the assessment of each risk’s likelihood and impact. The resulting
product risk information is used to guide test planning, the specification, preparation
and execution of test cases, and test monitoring and control.

Risk-based approach

Analyzing product risks early contributes to the success of a project.

SOFTWARE TESTING COMPENDIUM February 8, 2021

44

In a risk-based approach, the results of product risk analysis are used to:

 Determine the test techniques to be employed
 Determine the particular levels and types of testing to be performed (e.g., security testing, accessibility

testing)
 Determine the extent of testing to be carried out
 Prioritize testing in an attempt to find the critical defects as early as possible
 Determine whether any activities in addition to testing could be employed to reduce risk (e.g., providing

training to inexperienced designers)”

7.5 Risk Management procedure

Risk management is imperative and one of the most important pillars in software development projects.
Therefore, it should be institutionalized and performed continuously. Additionally, identified and rated risks
should be considered in the dawn of every critical decision.

“Risk management activities provide a disciplined approach to:

Risk Management procedure

1. Analyze (and re-evaluate on a regular basis) what can go wrong
(risks)

Analysis

2. Determine which risks are important to deal with

Identify and prioritize

3. Implement actions to mitigate those risks

Mitigation action development

4. Make contingency [probability] plans to deal with the risks should
they become actual events [impacts]”

Proactive risk monitoring

5. In addition, testing may identify new risks, help to determine what
risks should be mitigated, and lower uncertainty about risks.”

Testing’s contribution

FIGURE 23 MITIGATION ACTION DEVELOPMENT

SOFTWARE TESTING COMPENDIUM February 8, 2021

45

7.6 Exercises
1. Apply the steps 1 and 2 of the risk management procedure to your selected system to identify 5

requirements. Select 2 risky requirements and determine the risk level on the risk matrix. Define 1
mitigation action for each to reduce its risk level.

2. In section “Project Risks” the column contains 5 type of project issues. From each type select a risk and
discuss how to mitigate it.

SOFTWARE TESTING COMPENDIUM February 8, 2021

46

8 References
[HSSE] … Risk Matrix figure https://hsseworld.com/assessing-risks/

[ISTQB2018] … the ISTQB Certified Tester Foundation Level Syllabus Version 2018 V3.1

[ISTQBterms] … Standard Glossary of Terms Used in Software Testing, Version 3.01, All Terms, ISTQB

[STFebook] …
http://prof.mau.ac.ir/images/Uploaded_files/Software%20Testing%20Foundations%20A%20St
udy%20Guide%20for%20the%20Certified%20Tester%20Exam%5B5309302%5D.PDF

SOFTWARE TESTING COMPENDIUM February 8, 2021

47

9 ANNEX – TOPIC SECTION
ISTQB 2018 Syllabus Topic Ch. < # - name>

[intro if sub-topics present]

9.1 Overview or 1st sub-topic if given
< essentials>, < Illustrations>, <citations>

9.2 2nd sub-topic if given
< essentials>, < Illustrations>, <citations>

9.3 Exercises
<at least mocked questions & answers>

9.4 Supplementary Material
 Slides (complementary [Group <NAME>]

o Name and Location:
 Explanatory Illustrations [Group <NAME>]

o Name and Location:
 Explanatory Video Clips [Group <NAME>]

o Name and Location:
 Tutorials [Group <NAME>]

o Name and Location:
 Templates and Specifications [Group <NAME>]

o Name and Location:
 Code and Tooling [Group <NAME>]

o Name and Location:
 Course Video Clip [Group <NAME>]

o Name and Location:
o …

 Exams [Group <NAME>]
o Name and Location:

